a2 United States Patent

US009460109B1

10) Patent No.: US 9,460,109 B1

Hagerman 45) Date of Patent: Oct. 4, 2016
(54) CENTRALIZED PROVISIONING PROCESS 2012/0158806 Al* 6/2012 Snyder HO4L 67/1097
LEVERAGING NETWORK ATTACHED 2013/0086585 Al* 4/2013 Hi G06F78/75/(§%;
LIF: VT SRR
STORAGE 71871
. 2013/0263209 Al* 10/2013 Panuganty HO4L 43/04
(71) Applicant: Sprint Communications Company 726/1
L.P., Overland Park, KS (US) 2013/0326510 Al* 12/2013 Adekile GO6F 11/0709
718/1

(72) Inventor: Phillip Hagerman, Grandview, MO

Us)

(73) Assignee: Sprint Communications Company
L.P., Overland Park, KS (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 367 days.

(21) Appl. No.: 14/242,294

(22) Filed: Apr. 1, 2014

(51) Imt. ClL
GO6F 17/30
(52) US. CL
CPC it GO6F 17/302 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,454,487 B1* 11/2008 Becher HO4L 67/1097
707/999.2

9,274,811 B1* 3/2016 Reeves GOG6F 9/445
9,319,286 B2* 4/2016 Panuganty HO4L 41/0893
2003/0167456 Al* 9/2003 Sabharwal GO6F 8/24

717/108
2010/0325624 Al* 12/2010 Bartolo GO6F 8/61
717/176

Target
Computer

OTHER PUBLICATIONS

Gite, Linux: Set Environment Variable, Apr. 14, 2011, pp. 1-18.*
Configuring WebSphere Application Server (running IBM
InfoSphere Information Server) for nonroot administration, 2011,

pp. 1-3.*
Hoffman, Auto Scaling Your Website With Amazon Web Services
(AWS)—Part 2, May 25, 2012, pp. 1-11.*

* cited by examiner
Primary Examiner — Albert Phillips, 111
57 ABSTRACT

A method of building application server instances. The
method comprises configuring, by a script, a first application
server instance with parameter definitions exported from an
environment properties file, wherein an environment prop-
erties file comprises common parameter definitions for a
plurality of different application server instances under the
same environment. The method further comprises configur-
ing, by the script, the first application server instance with
parameter definitions exported from a first instance proper-
ties file, wherein an instance properties file comprises
parameter definitions specific to an individual application.
The method further comprises building the first application
server instance on a build server, wherein the build server is
a central server, storing the first application server instance
on a network attached storage (NAS) file system, mounting
files of the first application server instance by a first target
computer from the NAS system, and running the first
application server instance on the first target computer.

20 Claims, 5 Drawing Sheets

Build Server

— 116

/’—114
Memory [112
—— | 410

Environment Properties |1
———————————— —124
1™ Environment Cusiom ||}

Lj| | Configuration Function [

— 108
4+ 122
1

[l
+— 128
Admin Final L
Script Configuration

US 9,460,109 B1

Sheet 1 of 5

Oct. 4, 2016

U.S. Patent

L

uoljeJnbiyuon 1duog
[euld ulwpy

443

|

| 1 uonoung uoneinByuoD

I wojsny) aoue)su|

Vel

]

uopjoun 4 uoieinbyuo)
wojsng juswuoliAug

B
801 |\m\
lm\

oLl
L Jduos
kbl =1 Klowa
vl |\m\|
[
[10ss3901d
[
oLl l__\\\l
| Jonsg pling
|

JEINEIS

uoneoddy

901

SVN

Joindwon
19bie|

U.S. Patent Oct. 4, 2016 Sheet 2 of 5 US 9,460,109 B1

200
S

202 I Configure, by a script, a first application server instance with parameter
definitions exported from an environment properties file, wherein an
environment properties file comprises common parameter definitions
for a plurality of different application server instances under the same
environment.

v

204 | Configure, by the script, the first application server instance with
parameter definitions exported from a first instance properties file,
wherein an instance properties file comprises parameter definitions
specific to an individual application.

v

206 "™ Build the first application server instance on a build server, wherein
the build server is a central server.

v

208 ™| Store the first application server instance on a network attached
storage (NAS) file system.

™ Mount files of the first application server instance by a first target
computer from the NAS file svstem.

'

212 | Run the first application server instance on the first target computer.

FIG. 2A

U.S. Patent Oct. 4, 2016 Sheet 3 of 5 US 9,460,109 B1

200

RIS S

214\ Configure, by the script, a second application server instance with
parameter definitions exported from the environment properties file.

v

216 ™| Configure, by the script, the second application server instance with
parameter definitions exported from a second instance properties file.

v

218 "™ Build the second application server instance on the build server.

v

220_\ Store the second application server instance on the NAS file system.

v

Mount files of the second application server instance by a second
target computer from the NAS file system.

v

224 —
Run the second application server instance on the second target computer.

222 —_|

FIG. 2B

U.S. Patent Oct. 4, 2016 Sheet 4 of 5 US 9,460,109 B1

B (oo

302 —~_| Configure, by a script, the application server instance with parameter
definitions exported from an environment properties file based on input
credentials, wherein an environment properties file comprises common
parameter definitions for a plurality of different application server
instances under the same environment.

v

304 —_| Configure, by the script, the application server instance with parameter
definitions exported from an instance properties file based on the input
credentials, wherein an instance properties file comprises parameter
definitions specific to an individual application server instance for an
application.

v

306 —_| Configure the application server instance with at least one custom
configuration function, wherein a custom configuration function is
utilized for adding parameters specific to an application server
instance.

v

Build the application server instance on a build server, wherein the
build server is a central server.

v

310\ Store the application server instance on a network attached
storage (NAS) file system.

v

Shut the application server instance down.

v

314 " Mount files of the application server instance by a target
computer from the network attached storage file system.

v

Run the application server instance on the target computer.

312 —_

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 5 of 5 US 9,460,109 B1

380
382
390— 10
y
\ A
«» RAM |— 388
384—.] Secondary CPU
Storage s rom | 386

h 4
Network | _— 392

FIG. 4

US 9,460,109 B1

1
CENTRALIZED PROVISIONING PROCESS
LEVERAGING NETWORK ATTACHED
STORAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

None.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO A MICROFICHE APPENDIX

Not applicable.

BACKGROUND

The Internet is becoming increasingly prevalent in our
daily lives with the rapid development and popularization of
portable network capable devices. Additionally, more and
more electronic devices that did not have network capabili-
ties are getting network capable. With the development of
the Internet, network attached storage (NAS) servers are
becoming more and more accessible. Network attached
storage servers are computer devices that can be attached to
a network to store files and make them available to accred-
ited users. A network attached storage server may have its
own internet protocol addresses.

SUMMARY

In an embodiment, a method of building application
server instances is disclosed. The method comprises con-
figuring, by a script, a first application server instance with
parameter definitions exported from an environment prop-
erties file, wherein an environment properties file comprises
common parameter definitions for a plurality of different
application server instances under the same environment.
The method further comprises configuring, by the script, the
first application server instance with parameter definitions
exported from a first instance properties file, wherein an
instance properties file comprises parameter definitions spe-
cific to an individual application. The method further com-
prises building the first application server instance on a build
server, wherein the build server is a central server, and
storing the first application server instance on a network
attached storage (NAS) file system. The method further
comprises mounting files of the first application server
instance by a first target computer from the NAS file system
and running the first application server instance on the first
target computer. The method further comprises configuring,
by the script, a second application server instance with
parameter definitions exported from the environment prop-
erties file and configuring, by the script, the second appli-
cation server instance with parameter definitions exported
from a second instance properties file. The method further
comprises building the second application server instance on
the build server, storing the second application server
instance on the NAS file system, mounting files of the
second application server instance by a second target com-
puter from the NAS file system, and running the second
application server instance on the second target computer.

In an embodiment, a computer server is disclosed. The
computer server comprises a memory, a processor, and a

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of environment properties files stored in the
memory, each environment properties file comprising com-
mon parameter definitions for a plurality of different appli-
cation server instances under the same environment. The
computer server further comprises a plurality of instance
properties files stored in the memory, wherein each instance
properties file comprises parameter definitions specific to an
individual application. The computer server further com-
prises a script stored in the memory of the computer server,
when executed by the processor of the computer server,
exports parameter definitions from one of the environment
properties files based on input credentials, exports parameter
definitions from one of the instance properties files based on
the input credentials, and configures an application server
instance with the exported parameter definitions. The script
further builds the application server instance, and configures
the application server instance with at least one custom
configuration function, wherein a custom configuration
function definition is utilized for adding parameters defini-
tions specific to an application server instance.

In an embodiment, a method of building an application
server instance is disclosed. The method comprises config-
uring, by a script, the application server instance with
parameter definitions exported from an environment prop-
erties file based on input credentials, wherein an environ-
ment properties file comprises common parameter defini-
tions for a plurality of different application server instances
under the same environment. The method further comprises
configuring, by the script, the application server instance
with parameter definitions exported from an instance prop-
erties file based on the input credentials, wherein an instance
properties file comprises parameter definitions specific to an
individual application server instance for an application. The
method further comprises configuring the application server
instance with at least one custom configuration function,
wherein a custom configuration function is utilized for
adding parameters specific to an application server instance.
The method further comprises building the application
server instance on a build server, wherein the build server is
a central server, storing the application server instance on a
network attached storage (NAS) file system, and shutting the
application server instance down. The method further com-
prises mounting files of the application server instance by a
target computer from the NAS file system and running the
application server instance on the target computer.

These and other features will be more clearly understood
from the following detailed description taken in conjunction
with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, reference is now made to the following brief descrip-
tion, taken in connection with the accompanying drawings
and detailed description, wherein like reference numerals
represent like parts.

FIG. 1 is an illustration of a communication system
according to an embodiment of the disclosure.

FIG. 2A and FIG. 2B is a flow chart illustrating a method
according to an embodiment of the disclosure.

FIG. 3 is a flow chart illustrating another method accord-
ing to an embodiment of the disclosure.

FIG. 4 is a block diagram of a computer system according
to an embodiment of the disclosure.

DETAILED DESCRIPTION

It should be understood at the outset that although illus-
trative implementations of one or more embodiments are

US 9,460,109 B1

3

illustrated below, the disclosed systems and methods may be
implemented using any number of techniques, whether
currently known or not yet in existence. The disclosure
should in no way be limited to the illustrative implementa-
tions, drawings, and techniques illustrated below, but may be
modified within the scope of the appended claims along with
their full scope of equivalents.

Problems may occur when building application server
instances based on manually composed property files, par-
ticularly when large numbers of application servers are
being built. In a large enterprise, for example in a major
mobile communication service provider, hundreds of appli-
cation servers may be built from property files to support
various stages of application development and test. An
application server builder system is described herein that
performs application server builds based on two different
types of properties files: an environment properties file and
an instance properties file. Generally, the environment prop-
erties file contains parameter definitions that can be used in
building multiple application servers, thereby reducing the
number of times those parameters have to be manually
composed. This may reduce the numbers of errors as well as
reduce the level of effort expended by technicians to build
the application servers. The Instance properties files may
contain definitions of parameters that may have different
values from application server to application server.

A plurality of environment properties files and a plurality
of instance properties files may be stored on the central
server computer for various application server instances. A
script may be composed and utilized to manage the work-
flow for building application server instances. For example,
the script may comprise command line interface commands
(CLICs). The command line interface commands may be
called during execution of the script to build and configure
an application server instance. The script may first start an
application server template during the process of building an
application server instance, for example an application
server template stored in a memory of the central server.
Parameters may be added to the application server template
to build the application server instance, for example from an
environment properties file and/or an instance properties
file. Existing parameters in the application server template
may be defined during the build process. The script may
request credentials from a user, for example a server admin-
istrator of the central server. The script may then locate a
corresponding environment properties file and a correspond-
ing instance properties file from the pool of environment
properties files and the pool of instance properties files
respectively based on input credentials.

The script may export parameter definitions from the
environment properties file and configure the application
server instance with the exported parameter definitions. The
script may then export parameter definitions from the
instance properties file and configure the application server
instance with the exported parameter definitions. Parameter
(s) of the application server instance that have been defined
with parameter definition(s) exported from the environment
properties file may be redefined by parameter definition(s)
exported from the instance properties file. For example,
parameter(s) that have been given value(s) based on param-
eter definition(s) exported from the environment properties
file may be overridden with value(s) based on parameter
definition(s) exported from the instance properties file.

An environment custom configuration function definition
may be included at the end of the environment properties
file. An instance custom configuration function definition
may likewise be included at the end of the instance prop-

10

15

20

25

30

40

45

50

55

60

65

4

erties file. The environment/instance configuration function
definition may comprise no parameter definitions. Rarer
parameters may be added to either of the custom configu-
ration function definitions, or both, by the server adminis-
trator prior to the build process of the application server
instance. A custom configuration function definition with
parameter definitions may be referred to as a custom con-
figuration function herein. For example, the environment
custom configuration function definition with parameter
definitions may be referred to as an environment custom
configuration function, and the instance custom configura-
tion function definition with parameter definitions may be
referred to as an instance custom configuration function. As
part of the configuration process with the environment
properties file and the instance properties file, the applica-
tion server instance may be configured with parameter
definitions from either of the environment custom configu-
ration function and the instance custom configuration func-
tion, or both. That may conclude the build process of the
application server instance. After the application server
instance is built and configured and the build process is over,
the application server instance may be further configured
with a final configuration file. For example, the final con-
figuration file may change the ownership of the application
server instance, move the application server instance to a
different directory, or conduct another type of final configu-
ration.

An administrator script may be used for administrative
functions for the application server instance during and/or
after the build process of the application server instance. For
example, the administrator script may start the application
server instance, stop the application server instance, collect
diagnostic information for the application server instance, or
conduct another type of administrative function. After the
application server instance is built and configured with the
final configuration file if applicable, the built application
server instance may be shut down and stored on a network
attached storage (NAS) file system. When a target computer
desires to execute the application server instance for an
application, the target computer may mount relevant files of
the application server instance to the target computer and
execute the application server instance.

It is beneficial to divide parameters into two groups and
put them into two types of properties files, an environment
properties file and an instance properties file, and use the
build process taught in the present disclosure for building
and configuring an application server instance. Some of the
build process is automated so that some time may be saved
or some error may be avoided. For example, time may be
saved that would otherwise be spent in manually inputting
parameter definitions into one properties file each time
before an application server instance is built. Additionally,
errors that occur when parameter definitions are input manu-
ally into a properties file each time before an application
server instance is built may be avoided or limited. Said in
other words, building a plurality of applications servers
using a single environment properties file and multiple
instance properties files promotes obtaining the benefits of
reuse—less labor hours and reduced opportunities for
human errors—while supporting the differences that gener-
ally militate against reuse.

Turning now to FIG. 1, a communication system 100 is
described. In an embodiment, the communication system
100 comprises a plurality of target computers 102, a plural-
ity of network attached storage (NAS) servers 104, and a
build server 118. The build server 118 may comprise a
processor 116 and a memory 114. The memory 114 may

US 9,460,109 B1

5

comprise a script 112, a plurality of environment properties
files 110, and a plurality of instance properties files 108. The
NAS 104 may comprise a plurality of application server
instances 120. The build server 118 may have access to a
network 106. The target computer 102 and the NAS 104 may
also have access to the network 106. The network 106 may
comprise any combination of private and public networks.

It is understood that the system 100 may comprise any
number of target computers 102, any number of NAS
servers 104, and any number of build servers 118. The target
computer 102, the NAS server 104, and the build server 118
may be any of a desktop computer, a server computer, or
another network capable device. The NAS server 104 may
be a computer device that can be attached to a network to
store files and make them available to accredited users. The
NAS servers 104 may have their own internet protocol
addresses. The communication system 100 may comprise
more than one NAS servers 104. The NAS servers 104 may
locate at distinct physical locations. The NAS server(s) 104
may form a NAS file system.

The application server instance 120 may be an execution
environment for an application. For example, application
code may be written and deployed into an application server
instance 120. The application server instance 120 may
promote efficient execution of procedures (e.g. programs,
routines, scripts) for supporting application(s) that run in the
application server instance 120. For example, the application
server instance 120 may provide a container model for
application(s). The application server instance 120 may
provide application(s) with services such as clustering, fail-
over, load-balancing, data source connection handling, or
another type of service. The application server instance 120
may be built and/or configured before the application may
run in the application server instance 120. The application
server instance 120 configuration may be part of the build
process. In an embodiment, the application may be written
in Java programming language. The application server 120
may be a Java application server such as a JBoss application
server (e.g. a JBoss EAP6 version application server).

After the application server instance 120 is built and/or
configured, the application server instance 120 may be
stored in the NAS 104. The NAS server(s) 104 may be said
to form a NAS file system. Thus, the built and/or configured
application server instance 120 may be said to be stored in
the NAS file system. The application server instance 120
may run on the target computer 102 where one or more Java
applications may run in the application server instance 120.
For example, the target computer 102 may mount associated
files of the application server instance 120 from the NAS file
system and run the application server instance 120 when the
Java application is run by a processor of the target computer
102.

The build server 118 may be a central server, for example
maintained by a communications service provider. The
communications service provider may have more than one
central server at various physical locations, and a central
server that is physically closer to a target computer 102 may
be chosen to build an application server instance 120 for the
target computer 102. In an embodiment, a repository of
various versions of JBoss and/or various types of middle-
ware may be stored in the memory 114 of the build server
118. The repository may be a version control system for
files. Environment properties file(s) 110 and instance prop-
erties file(s) 108 may be stored in the memory 114 of the
build server 118. When credential(s) of an administrator or
an application server instance 120 is entered, a proper
environment properties file 110 and/or a proper instance

10

15

20

25

30

35

40

45

50

55

60

65

6

properties file 108 may be selected to build the correspond-
ing application server instance 120.

The script 112 stored in the memory 114 of the build
server 118 may build and/or configure application server
instances 120 with the selected environment properties file
110 and the selected instance properties file 108. The script
112 may start an application server template stored in the
memory 114 and build an application server instance 120 by
adding parameters to the application server template and/or
editing exiting parameter definitions, for example by over-
riding parameter definitions of the application server tem-
plate. After an application server instance 120 is built and/or
configured, the application server instance 120 may be shut
down. The application server instance 120 may then be
stored in the NAS file system. Files associated with the
application server instance 120 may be mounted by the
target computer 102 and the application server instance 120
may be run by the target computer 102 at the time of
execution of an application that runs in the application
server instance 120.

An environment properties file 110 may be a properties
file that comprises common configurable parameters or
parameter definitions for application server instances 120
under the same environment. A parameter definition may
comprise a pair of strings, one storing the name of the
parameter, and the other storing the value. A parameter
definition may be stored in a variety of formats, for example
“parameter name=value”, “parameter name=value”,
“parameter name: value”, or another type of format. More
complex configuration formats such as extensible markup
language (XML) or yet another multicolumn layout
(YAML) may also be utilized to store parameter definitions.

In current systems, parameters may be manually input, for
example by a server administrator, into a properties file
when an application server instance is to be built and/or
configured. The process may be time consuming and error
prone. However, when properties are divided to be defined
in an environment properties file 110 and/or an instance
properties file 108, time that currently is used to manually
input parameters may be saved and manual input error may
be limited. Parameters that are defined in an environment
properties file 110 or an instance properties file 108 by
predefined rule(s) may be called standard parameters. An
environment properties file 110 may be used to build a
plurality of distinct application server instances 120 under
the same environment. Non-standard parameters may be
later added into a custom configuration function definition
122/124 before the build process of an application server
instance 120.

For example, a parameter may be determined whether or
not to be a standard parameter based on the percentage of
how many application server instances 120 may be config-
ured with it. For example, a parameter may be determined
whether or not to be a standard parameter based on an 80-20
rule, a 70-30 rule, a 90-10 rule, or another rule. For example,
with the 80-20 rule, parameters that are common to 80% of
application server instances 120 may be defined in an
environment properties file 110 and/or an instance properties
file 108. It should be noted a parameter is different from a
parameter definition. A parameter may be the name of the
parameter while a parameter definition may comprise the
name of the parameter and the value of the parameter.
Parameters may be further divided based on the parameter
definitions to decide which parameter definitions may be
defined in an environment properties file 110 and which
parameter definitions may be defined in an instance prop-
erties file 108.

US 9,460,109 B1

7

Types of environments may include a development envi-
ronment, a system test environment, a test environment, a
break fix environment, a training environment, a production
environment, or another type of environment. For example,
a development environment may be associated with appli-
cation server instances for developing applications and a test
environment may be associated with application server
instances for testing applications. One type of environment
may include more than one environment. Environments of
the same type may be marked with different numbers to
differentiate from each other. Each environment of the same
type with a different number may be associated with a
different release cycle. For example, develop environments
0-6 may be seven different development environments.
Development environment O may be associated with the first
release of a year and development environment 1 may be
associated with the second release of the year.

An environment properties file 110 may comprise a
variety of parameters common to a plurality of application
server instances 120 under the same environment, for
example application identification, an application environ-
ment, directory of the build server 118, JBoss version, Java
development kit (JDK) version, JBoss vault usage informa-
tion, logging level information, standard heap size, standard
Java options, secure socket layer (SSL) usage information,
clustering information, active directory as login mechanism
usage information, or another parameter.

The environment properties files 110 may be stored in the
memory 114 of the build server 118. A plurality of environ-
ment properties files 110 may be stored in the memory 114,
each corresponding to an environment. The parameter defi-
nitions in the environment properties file 110 may be
exported by the script 112 during a process of building a
corresponding application server instance 120. The applica-
tion server instance 120 may be configured with the param-
eter definitions exported from the environment properties
file 110 by the script 112.

An instance properties file 108 may comprise parameter
definitions that are specific to an application while common
to application components of that same application. An
application may comprise a variety of application compo-
nents, for example functions, processes, or another type of
component. Each application component may run in an
individual application server instance 120 and thus an
instance properties file 108 may be created to comprise
parameter definitions specific to an application while com-
mon to application components of that same application.

An instance properties file 108 may comprise a variety of
parameters common to application components of the same
application, for example identification of the target com-
puter 102, an internet protocol address that the application
server instance 120 will listen on, identification of the
application server instance 120, wait time for an adminis-
trator script 126 at starting the application server instance
120, wait time for the administrator script 126 at stopping
the application server instance 120, data source(s) with the
connection information, size of the connection pool, or
another parameter.

The instance properties files 108 may be stored in the
memory 114 of the build server 118. A plurality of instance
properties files 108 may be stored in the memory 114, each
corresponding to an application. The parameter definitions
in the instance properties file 108 may be exported by the
script 112 during a process of building a corresponding
application server instance 120. The application server
instance 120 may be configured with the parameter defini-
tions exported from the instance properties file 108 by the

10

15

20

25

30

35

40

45

50

55

60

65

8

script 112. By configuring the application server instance
120 with parameter definitions from the instance properties
file 108, parameter(s) that has already been defined by the
environment properties file 110 may be redefined.

The environment properties file 110 may comprise an
environment custom configuration function definition 124 at
the end of the file. The instance properties file 108 may
comprise an instance custom configuration function defini-
tion 122 at the end of the file. A custom configuration
function definition 122/124 may be a configuration function
without parameter definitions. Parameter definitions may be
added, for example by an administrator of the build server
118, to the custom configuration function definition 122/124
before the application server instance 120 is built. These
parameters may comprise rarer parameters than parameters
defined in the environment properties file 110 or the instance
properties file 108.

In other words, a custom configuration function definition
122/124 may be utilized to add parameters that are rarer than
standard parameters defined in the environment properties
file 110 or the instance properties file 108. For example, rarer
parameters, for example than standard parameters in the
environment properties file 110, that are specific to a specific
environment may be added to the environment custom
configuration function definition 124. Similarly, rarer
parameters, for example than standard parameters in the
instance properties file 108, that are specific to an applica-
tion server instance 120 may be added to the instance custom
configuration function definition 122. A custom configura-
tion function definition 122/124 with parameter definitions
may be called a custom configuration function, for example
an environment custom configuration function 124 or an
instance custom configuration function 122.

A final configuration file 128 may be stored in the memory
114 of the build server 118. The final configuration file 128
may be utilized by the script 112 to perform custom con-
figurations after the application server instance 120 is built
and/or configured. The final configuration file 128 may be
edited, for example by the administrator of the build server
118, before the build process of the application server
instance 120. For example, the final configuration file 128
may be utilized to change the ownership of the application
server instance 120, to move the application server instance
120 to another directory, or for anther final configuration
purpose.

An administrator script 126 may be stored in the memory
114 of the build server 118. The administrative script may
conduct administrative functions for each application server
instance 120. For example, the administrator script 126 may
comprise functions such as starting an application server
instance 120, stopping an application server instance 120,
collecting diagnostic information, deploying code, adding
users to an application server instance 120, adding applica-
tion specific logs to standard log rotation script, or another
function. The administrator script 126 may be a single
editable point of entry for administrator(s) of the build
server 118, an application support team, and/or personnel
from other departments of the communications service pro-
vider. Activities of the administrator script 126 may be
logged, for example what action the administrator script 126
performed, who performed the action with the administrator
script 126, date of the action, time of the action, or other
relevant information. A command line interface (CLI) may
be utilized, and command line interface commands (CLICs)
may be input to execute configuration commands, for
example to call scripts for a variety of functionality. The

US 9,460,109 B1

9

command line interface commands may also be written in
the script 112 to execute configuration commands.

The script 112 may be stored in the memory 114 of the
build server 118. When executed by the processor 116 of the
build server 118, the script 112 may perform a variety of
functionality to build and/or configure application server
instances 120. For example, after the script is called by the
command line interface command(s), the script may request
credential(s) from a user (e.g., an administrator of the build
server 118). With the credential(s), the script may locate a
corresponding environment properties file 110 and a corre-
sponding instance properties file 108. The script 112 may
first export parameter definitions from the environment
properties file 110 and then export parameter definitions
from the instance properties file 108. Parameter definitions
defined in the environment custom configuration function
124 and the instance custom configuration function 122 may
also be exported by the script 112 as part of the environment
properties file 110 and the instance properties file 108
respectively.

The script 112 may build a corresponding application
server instance 120. The script may configure the application
server instance 120 with the parameter definitions exported
from the environment properties file 110 first and then with
the parameter definitions exported from the instance prop-
erties file 108. After the application sever instance 120 is
built and/or configured, the script 112 may perform final
configuration with information from the final configuration
file 128. The script 112 may shut down the application server
instance 120 and save the application server instance 120 on
the NAS file system after the application server instance 120
is configured with the final configuration file 128. When the
target computer 102 desires to execute the application server
instance 120, the target computer 102 may mount relevant
files of the application server instance 120 from the NAS
104 file system and execute the application server instance
120. For example, the target computer 102 may copy the
relevant files of the application server instance 120 from the
NAS 104 file system and execute the application server
instance 120 on the target computer 102. Alternatively, the
target computer 102 may treat the NAS 104 file system as
external storage, mount the relevant files of the application
server instance 120 from the NAS 104 file system, and
execute the application server instance 120.

Turning now to FIG. 2A and FIG. 2B, a method 200 is
described. At block 202, a first application server instance is
configured by a script with parameter definitions exported
from an environment properties file, wherein an environ-
ment properties file comprises common parameter defini-
tions for a plurality of different application server instances
under the same environment. For example, the application
server instance 120 may be configured by the script 112 with
parameter definitions exported from a corresponding envi-
ronment properties file 110. The environment properties file
110 may comprise common parameter definitions for a
plurality of different application server instances 120 under
the same environment.

At block 204, the first application server instance 120 is
configured by the script 112 with parameter definitions
exported from a first instance properties file 108, wherein an
instance properties file 108 comprises parameter definitions
specific to an individual application. At block 206, the first
application server instance 120 is built on a build server 118,
wherein the build server 118 is a central server.

At block 208, the first application server instance 120 is
stored on a network attached storage (NAS) 104 file system.
Atblock 210, files of the first application server instance 120

5

10

15

20

25

30

35

40

45

50

55

60

65

10

are mounted by a first target computer 102 from the NAS
104 file system. At block 212, the first application server
instance 120 is run on the first target computer 102.

At block 214, a second application server instance is
configured by the script with parameter definitions exported
from the environment properties file. For example, when a
second application server instance under the same environ-
ment as the first application server instance 120 is to be built,
common parameter definitions exported from the same
environment properties file 110 may be utilized to configure
the second application server instance by the script 112. In
an embodiment, when a third application server instance
under a different environment from the first application
server instance 120 is to be built, parameter definitions
exported from a different environment properties file may be
utilized to configure the third application server instance by
the script 112.

At block 216, the second application server instance is
configured by the script 112 with parameter definitions
exported from a second instance properties file. For
example, when the second application server instance is to
run a different application from the application the first
application instance 120 is to run, a second instance prop-
erties file may be used by the script 112 to configure the
second application server instance. Parameter definitions
may be exported from the second instance properties file to
configure the second application server instance by the script
112.

At block 218, the second application server instance is
built on the build server 118. For example, the second
application server instance may be built by the script 112 on
the build server 118. At block 220, the second application
server instance is stored on the NAS 104 file system. At
block 222, files of the second application server instance are
mounted by a second target computer from the NAS 104 file
system. When a second target computer is to run the second
application server instance, files of the second application
server instance may be mounted by the second target com-
puter from the NAS 104 file system. At block 224, the
second application server instance is run on the second target
computer 102.

Turning now to FIG. 3, a method 300 is described. At
block 302, the application server instance is configured by a
script with parameter definitions exported from an environ-
ment properties file based on input credentials, wherein an
environment properties file comprises common parameter
definitions for a plurality of different application server
instances under the same environment. For example, the
script 112 may request credential(s) from a user, for example
an administrator of the build server 118. The script 112 may
locate a corresponding environment properties file 110 in the
memory 114 based on the input credential(s). The applica-
tion server instance 120 that the script 112 is building may
be configured by the script 112 with parameter definitions
exported from the corresponding environment properties file
110. The environment properties file 110 may comprise
common parameter definitions for a plurality of different
application server instances 120 under the same environ-
ment.

At block 304, the application server instance is configured
by the script with parameter definitions exported from an
instance properties file based on the input credentials,
wherein an instance properties file comprises parameter
definitions specific to an individual application server
instance for an application. For example, based on the input
credential(s), a corresponding instance properties file 108
may also be located from the memory 114 by the script 112.

US 9,460,109 B1

11

The application server instance 120 may be configured by
the script 112 with parameter definitions exported from the
instance properties file 108. The instance properties file 108
may comprise parameter definitions specific to an applica-
tion while common to application components of that same
application.

At block 306, the application server instance is configured
with at least one custom configuration function, wherein a
custom configuration function is utilized for adding param-
eters specific to an application server instance. For example,
the application server instance 120 may be configured with
at least one custom configuration function 122/124. A cus-
tom configuration function 122/124 may be utilized for
adding parameters specific to an application server instance
120.

A custom configuration function 122/124 may be either an
environment custom configuration function 124 or an
instance custom configuration function 122. An environment
custom configuration function definition 124 may be defined
in the end of the environment properties file 110, and
parameter definitions may be added to the environment
custom configuration function definition 124 to make it an
environment custom configuration function 124 before the
build process of the application server instance 120 takes
place, for example by the administrator of the build server
118. An instance custom configuration function definition
122 may be defined in the end of the instance properties file
108, and parameter definitions may be added to the instance
custom configuration function definition 122 to make it an
instance custom configuration function 122 before the build
process of the application server instance 120 takes place,
for example by the administrator of the build server 118.

Parameters in the environment properties file 110 may be
standard parameters that are common to a plurality of
application server instances 120 under the same environ-
ment, the corresponding environment of the environment
properties file 110. Rarer environment parameters that are
specific to one environment may be added to the environ-
ment custom configuration function definition 124. Param-
eters in the instance properties file 108 may be standard
parameters that are common to application server instance(s)
120 for an application, for example application server
instance(s) 120 where application components of that same
application run. Rarer environment parameters that are spe-
cific to one application server instance 120 may be added to
the instance custom configuration function definition 122. A
custom configuration function definition 122/124 with
parameter definitions may be called a custom configuration
function 122/124 herein.

The parameter definitions in the environment custom
configuration function 124 may be exported and/or config-
ured by the script 112 as part of the exportation and/or
configuration of the parameter definitions in the environ-
ment properties file 110. The parameter definitions in the
instance custom configuration function 122 may be exported
and/or configured by the script 112 as part of the exportation
and/or configuration of the parameter definitions in the
instance properties file 108.

At block 308, the application server instance is built on a
build server, wherein the build server is a central server. For
example, the application server instance 120 may be built on
a build server 118. The build server 118 may be a central
server. A central server may hold a repository for various
versions of the application server instances 120 and/or
various middleware.

At block 310, the application server instance is stored on
a network attached storage (NAS) file system. For example,

10

15

20

25

30

35

40

45

50

55

60

65

12

the built application server instance 120 may be stored on
the NAS 104 file system. At block 312, the application
server instance is shut down. For example, the application
server instance 120 may be shut down after the application
server instance 120 is stored on the NAS 104 file system.

At block 314, files of the application server instance are
mounted by a target computer from the NAS file system. For
example, relevant files of the application server instance 120
may be mounted by a target computer 102 from the NAS
104 file system. At block 316, the application server instance
is run on the target computer. For example, the application
server instance 120 may be run on the target computer 102.

FIG. 4 illustrates a computer system 380 suitable for
implementing one or more embodiments disclosed herein.
The computer system 380 includes a processor 382 (which
may be referred to as a central processor unit or CPU) that
is in communication with memory devices including sec-
ondary storage 384, read only memory (ROM) 386, random
access memory (RAM) 388, input/output (I/O) devices 390,
and network connectivity devices 392. The processor 382
may be implemented as one or more CPU chips.

It is understood that by programming and/or loading
executable instructions onto the computer system 380, at
least one of the CPU 382, the RAM 388, and the ROM 386
are changed, transforming the computer system 380 in part
into a particular machine or apparatus having the novel
functionality taught by the present disclosure. It is funda-
mental to the electrical engineering and software engineer-
ing arts that functionality that can be implemented by
loading executable software into a computer can be con-
verted to a hardware implementation by well-known design
rules. Decisions between implementing a concept in soft-
ware versus hardware typically hinge on considerations of
stability of the design and numbers of units to be produced
rather than any issues involved in translating from the
software domain to the hardware domain. Generally, a
design that is still subject to frequent change may be
preferred to be implemented in software, because re-spin-
ning a hardware implementation is more expensive than
re-spinning a software design. Generally, a design that is
stable that will be produced in large volume may be pre-
ferred to be implemented in hardware, for example in an
application specific integrated circuit (ASIC), because for
large production runs the hardware implementation may be
less expensive than the software implementation. Often a
design may be developed and tested in a software form and
later transformed, by well-known design rules, to an equiva-
lent hardware implementation in an application specific
integrated circuit that hardwires the instructions of the
software. In the same manner as a machine controlled by a
new ASIC is a particular machine or apparatus, likewise a
computer that has been programmed and/or loaded with
executable instructions may be viewed as a particular
machine or apparatus.

The secondary storage 384 is typically comprised of one
or more disk drives or tape drives and is used for non-
volatile storage of data and as an over-flow data storage
device if RAM 388 is not large enough to hold all working
data. Secondary storage 384 may be used to store programs
which are loaded into RAM 388 when such programs are
selected for execution. The ROM 386 is used to store
instructions and perhaps data which are read during program
execution. ROM 386 is a non-volatile memory device which
typically has a small memory capacity relative to the larger
memory capacity of secondary storage 384. The RAM 388
is used to store volatile data and perhaps to store instruc-
tions. Access to both ROM 386 and RAM 388 is typically

US 9,460,109 B1

13
faster than to secondary storage 384. The secondary storage
384, the RAM 388, and/or the ROM 386 may be referred to
in some contexts as computer readable storage media and/or
non-transitory computer readable media.

1/O devices 390 may include printers, video monitors,
liquid crystal displays (LLCDs), touch screen displays, key-
boards, keypads, switches, dials, mice, track balls, voice
recognizers, card readers, paper tape readers, or other well-
known input devices.

The network connectivity devices 392 may take the form
of modems, modem banks, Ethernet cards, universal serial
bus (USB) interface cards, serial interfaces, token ring cards,
fiber distributed data interface (FDDI) cards, wireless local
area network (WLAN) cards, radio transceiver cards such as
code division multiple access (CDMA), global system for
mobile communications (GSM), long-term evolution (LTE),
worldwide interoperability for microwave access (Wi-
MAX), and/or other air interface protocol radio transceiver
cards, and other well-known network devices. These net-
work connectivity devices 392 may enable the processor 382
to communicate with the Internet or one or more intranets.
With such a network connection, it is contemplated that the
processor 382 might receive information from the network,
or might output information to the network in the course of
performing the above-described method steps. Such infor-
mation, which is often represented as a sequence of instruc-
tions to be executed using processor 382, may be received
from and outputted to the network, for example, in the form
of a computer data signal embodied in a carrier wave.

Such information, which may include data or instructions
to be executed using processor 382 for example, may be
received from and outputted to the network, for example, in
the form of a computer data baseband signal or signal
embodied in a carrier wave. The baseband signal or signal
embedded in the carrier wave, or other types of signals
currently used or hereafter developed, may be generated
according to several methods well known to one skilled in
the art. The baseband signal and/or signal embedded in the
carrier wave may be referred to in some contexts as a
transitory signal.

The processor 382 executes instructions, codes, computer
programs, scripts which it accesses from hard disk, floppy
disk, optical disk (these various disk based systems may all
be considered secondary storage 384), ROM 386, RAM 388,
or the network connectivity devices 392. While only one
processor 382 is shown, multiple processors may be present.
Thus, while instructions may be discussed as executed by a
processor, the instructions may be executed simultaneously,
serially, or otherwise executed by one or multiple proces-
sors. Instructions, codes, computer programs, scripts, and/or
data that may be accessed from the secondary storage 384,
for example, hard drives, floppy disks, optical disks, and/or
other device, the ROM 386, and/or the RAM 388 may be
referred to in some contexts as non-transitory instructions
and/or non-transitory information.

In an embodiment, the computer system 380 may com-
prise two or more computers in communication with each
other that collaborate to perform a task. For example, but not
by way of limitation, an application may be partitioned in
such a way as to permit concurrent and/or parallel process-
ing of the instructions of the application. Alternatively, the
data processed by the application may be partitioned in such
a way as to permit concurrent and/or parallel processing of
different portions of a data set by the two or more computers.
In an embodiment, virtualization software may be employed
by the computer system 380 to provide the functionality of
a number of servers that is not directly bound to the number

20

40

45

50

55

14

of computers in the computer system 380. For example,
virtualization software may provide twenty virtual servers
on four physical computers. In an embodiment, the func-
tionality disclosed above may be provided by executing the
application and/or applications in a cloud computing envi-
ronment. Cloud computing may comprise providing com-
puting services via a network connection using dynamically
scalable computing resources. Cloud computing may be
supported, at least in part, by virtualization software. A cloud
computing environment may be established by an enterprise
and/or may be hired on an as-needed basis from a third party
provider. Some cloud computing environments may com-
prise cloud computing resources owned and operated by the
enterprise as well as cloud computing resources hired and/or
leased from a third party provider.

In an embodiment, some or all of the functionality dis-
closed above may be provided as a computer program
product. The computer program product may comprise one
or more computer readable storage medium having com-
puter usable program code embodied therein to implement
the functionality disclosed above. The computer program
product may comprise data structures, executable instruc-
tions, and other computer usable program code. The com-
puter program product may be embodied in removable
computer storage media and/or non-removable computer
storage media. The removable computer readable storage
medium may comprise, without limitation, a paper tape, a
magnetic tape, magnetic disk, an optical disk, a solid state
memory chip, for example analog magnetic tape, compact
disk read only memory (CD-ROM) disks, floppy disks, jump
drives, digital cards, multimedia cards, and others. The
computer program product may be suitable for loading, by
the computer system 380, at least portions of the contents of
the computer program product to the secondary storage 384,
to the ROM 386, to the RAM 388, and/or to other non-
volatile memory and volatile memory of the computer
system 380. The processor 382 may process the executable
instructions and/or data structures in part by directly access-
ing the computer program product, for example by reading
from a CD-ROM disk inserted into a disk drive peripheral of
the computer system 380. Alternatively, the processor 382
may process the executable instructions and/or data struc-
tures by remotely accessing the computer program product,
for example by downloading the executable instructions
and/or data structures from a remote server through the
network connectivity devices 392. The computer program
product may comprise instructions that promote the loading
and/or copying of data, data structures, files, and/or execut-
able instructions to the secondary storage 384, to the ROM
386, to the RAM 388, and/or to other non-volatile memory
and volatile memory of the computer system 380.

In some contexts, the secondary storage 384, the ROM
386, and the RAM 388 may be referred to as a non-transitory
computer readable medium or a computer readable storage
media. A dynamic RAM embodiment of the RAM 388,
likewise, may be referred to as a non-transitory computer
readable medium in that while the dynamic RAM receives
electrical power and is operated in accordance with its
design, for example during a period of time during which the
computer system 380 is turned on and operational, the
dynamic RAM stores information that is written to it.
Similarly, the processor 382 may comprise an internal RAM,
an internal ROM, a cache memory, and/or other internal
non-transitory storage blocks, sections, or components that
may be referred to in some contexts as non-transitory
computer readable media or computer readable storage
media.

US 9,460,109 B1

15

While several embodiments have been provided in the
present disclosure, it should be understood that the disclosed
systems and methods may be embodied in many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the inten-
tion is not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated in another system or certain features may
be omitted or not implemented.

Also, techniques, systems, subsystems, and methods
described and illustrated in the various embodiments as
discrete or separate may be combined or integrated with
other systems, modules, techniques, or methods without
departing from the scope of the present disclosure. Other
items shown or discussed as directly coupled or communi-
cating with each other may be indirectly coupled or com-
municating through some interface, device, or intermediate
component, whether electrically, mechanically, or other-
wise. Other examples of changes, substitutions, and altera-
tions are ascertainable by one skilled in the art and could be
made without departing from the spirit and scope disclosed
herein.

What is claimed is:

1. A method of building application server instances,
comprising:

configuring, by a script, a first application server instance

with parameter definitions exported from an environ-
ment properties file, wherein an environment properties
file comprises common parameter definitions for a
plurality of different application server instances under
the same environment;

configuring, by the script, the first application server

instance with parameter definitions exported from a
first instance properties file, wherein an instance prop-
erties file comprises parameter definitions specific to an
individual application;

building the first application server instance on a build

server, wherein the build server is a central server;
storing the first application server instance on a network
attached storage (NAS) file system;

mounting files of the first application server instance by a

first target computer from the NAS file system;
running the first application server instance on the first
target computer,

configuring, by the script, a second application server

instance with parameter definitions exported from the
environment properties file;

configuring, by the script, the second application server

instance with parameter definitions exported from a
second instance properties file;

building the second application server instance on the

build server;

storing the second application server instance on the NAS

file system;

mounting files of the second application server instance

by a second target computer from the NAS file system;
and

running the second application server instance on the

second target computer.

2. The method of claim 1, wherein the environment
properties file further comprises a custom configuration
function definition to add parameters specific to an environ-
ment.

10

20

25

30

35

40

45

55

16

3. The method of claim 1, wherein an instance properties
file further comprises a custom configuration function defi-
nition to add parameters specific to an application server
instance.
4. The method of claim 1, further comprising a final
configuration function to perform custom configurations
after an application server instance is built and configured.
5. The method of claim 1, wherein one administrative
script is composed to conduct administrative functions for
each application server instance.
6. The method of claim 1, wherein command-line inter-
face commands (CLICs) are utilized in a build process to
execute configuration commands.
7. The method of claim 1, wherein an Java application
runs in an application server and wherein the version of a
Java development kit (JDK) is defined in the environment
properties file.
8. The method of claim 7, wherein the application server
is a JBoss application server.
9. A computer server, comprising:
a memory;
a processor;
a plurality of environment properties files stored in the
memory, each environment properties file comprising
common parameter definitions for a plurality of differ-
ent application server instances under the same envi-
ronment;
a plurality of instance properties files stored in the
memory, wherein each instance properties file com-
prises parameter definitions specific to an individual
application; and
a script stored in the memory of the computer server,
when executed by the processor of the computer server
exports parameter definitions from one of the environ-
ment properties files based on input credentials,

exports parameter definitions from one of the instance
properties files based on the input credentials,

configures an application server instance with the
exported parameter definitions,

builds the application server instance, and

configures the application server instance with at least
one custom configuration function, wherein a custom
configuration function definition is utilized for add-
ing parameters definitions specific to an application
server instance.

10. The computer server of claim 9, wherein the appli-
cation server is an execution environment for Java code and
the application server is a JBoss application server.

11. The computer server of claim 9, wherein the environ-
ment properties file comprises at least one of application
identification, an application environment, directory of the
build server, JBoss version, Java development kit (JDK)
version, JBoss vault usage information, logging level infor-
mation, standard heap size, standard Java options, secure
socket layer (SSL) usage information, clustering informa-
tion, or active directory as login mechanism usage informa-
tion.

12. The computer server of claim 9, wherein the instance
properties file comprises at least one of identification of the
target computer, an internet protocol address the application
server will listen on, identification of the application server,
wait time for an administrative script at starting the appli-
cation server, wait time for an administrative script at
stopping the application server, data sources with their
connection information, or size of connection pool.

13. The computer server of claim 9, wherein types of
environments comprise development environments, system

US 9,460,109 B1

17

test environments, test environments, a break fix environ-
ment, a training environment, or a production environment.
14. The computer server of claim 9, wherein after the
application server instance is built, the application server
instance is shut down, files of the application server instance
are then mounted by a target computer from a network
attached storage (NAS) file system, and the application
server instance is run at the target computer.
15. The computer server of claim 9, wherein a second
application server instance is built by exporting parameter
definitions from a different environment properties file based
on input credentials, exporting parameter definitions from a
different instance properties file based on the input creden-
tials, configuring the second application server instance with
the exported parameter definitions, building the second
application server instance, and configuring the second
application server instance with at least one custom con-
figuration function by the script.
16. A method of building an application server instance,
comprising:
configuring, by a script, the application server instance
with parameter definitions exported from an environ-
ment properties file based on input credentials, wherein
an environment properties file comprises common
parameter definitions for a plurality of different appli-
cation server instances under the same environment;

configuring, by the script, the application server instance
with parameter definitions exported from an instance
properties file based on the input credentials, wherein
an instance properties file comprises parameter defini-
tions specific to an individual application server
instance for an application;

configuring the application server instance with at least

one custom configuration function, wherein a custom
configuration function is utilized for adding parameters
specific to an application server instance;

10

15

20

25

30

35

18

building the application server instance on a build server,

wherein the build server is a central server;

storing the application server instance on a network

attached storage (NAS) file system;

shutting the application server instance down;

mounting files of the application server instance by a

target computer from the NAS file system; and
running the application server instance on the target
computer.

17. The method of claim 16, wherein one application has
at least one application component and each application
component runs in one application server instance, wherein
command-line interface commands execute configuration
commands in the build process.

18. The method of claim 16, wherein Java code runs in the
application server and the central server holds a repository
comprising middleware or various versions of JBoss,
wherein JBoss is a type of Java application server.

19. The method of claim 16, wherein the instance prop-
erties file redefines parameters in the environment properties
file.

20. The method of claim 16, wherein further comprising,
configuring a second application server instance with param-
eter definitions exported from the environment properties
file based on input credentials, configuring the second appli-
cation server instance with parameter definitions exported
from a different instance properties file based on the input
credentials, configuring the second application server
instance with at least one custom configuration function,
building the second application server instance on the build
server, storing the second application server instance on the
NAS file system, shutting the second application server
instance down by the script, mounting files of the second
application server instance by a second target computer from
the NAS file system, and running the second application
server instance on the second target computer.

#* #* #* #* #*

